Que estás buscando?
CE14: Conocimiento y utilización de los principios de la resistencia de materiales.
La asignatura de Introducción a la Resistencia de Materiales aporta los conceptos, vocabulario y herramientas básicas para comprender cómo actúan los materiales al ser sometidos a diferentes tipos de esfuerzos y momentos. Se estudian los conceptos de equilibrio estático para determinar las condiciones de estabilidad, los esfuerzos normales, cortantes, los momentos flectores, torsores y las deformaciones que actúan sobre un elemento estructural. Se analizan los sólidos mediante modelos simplificados que posteriormente se utilizarán en las asignaturas de elasticidad y Resistencia de Materiales, Ingeniería de Materiales, Máquinas y Mecanismos.
En general el alumno debe ser capaz de poder:
De manera genérica los contenidos de la asignatura se pueden agrupar en las siguientes temáticas:
3. Tensiones y deformaciones en vigas.
De manera específica, la asignatura constará de los siguientes temas:
Tema 1. Introducción y conceptos generales.
1.1. - Resistencia de materiales. Conceptos generales.
1.2. - Tipo de esfuerzos internos. Clasificación.
1.3. - Diagrama tensión - deformación de un material.
1.3.1. - Obtención del diagrama tensión - deformación.
1.3.2. - Introducción a los conceptos de tensión y deformación.
1.3.3. - Comportamiento elástico y comportamiento plástico de un material.
1.3.4. - Interpretación del diagrama tensión - deformación del acero. Módulo de Young. Ley de Hooke. Ductilidad. Fragilidad. Plastificación.
1.3.5. - Interpretación del diagrama tensión - deformación de otros materiales. Aluminio. Cerámica. Hormigón. Madera.
1.4. - Premisas de la resistencia de materiales.
1.5. - Ejercicios diagrama tensión deformación.
Tema 2. Geometría de masas.
2.1. - Centro de gravedad.
2.2. - Área.
2.3. - Momento estático.
2.4. - Momento de inercia.
2.5. - Teorema de Steiner.
2.6. - Módulo resistente.
2.7. - Momento de inercia polar.
2.8. - Radio de giro.
2.9. - Producto de inercia
2.10. - Ejercicios.
Tema 3. Esfuerzo axil.
3.1. - Definición de esfuerzo axil.
3.2. - Cálculo tensional.
3.3. - Cálculo de deformaciones. Deformación unitaria. Ley de Hooke.
3.4. - Esfuerzos térmicos.
3.5. - Módulo de elasticidad transversal o módulo de Coulomb. El efecto Poisson.
3.6. - Parámetros característicos del comportamiento de los materiales.
3.7. - Estructuras isostáticas, hiperestáticas y mecanismos.
3.8. - Ejercicios.
Tema 4. Flexión pura.
4.1. - Definición de flexión. Fibra neutra.
4.2. - Flexión pura.
4.3. - Cálculo tensional. Hipótesis de Navier. Módulo resistente.
Tema 5. Flexión simple.
5.1. - Definición de flexión simple.
5.2. - Esfuerzos normales Vs tensiones normales. esfuerzos tangenciales Vs.tensiones tangenciales.
5.3. - Esfuerzo cortante. relación flexión Vs cortante.
5.4. - Esfuerzo rasante. Cálculo tensional. Expresión de Jouravski - COLIGNON. Ley de Cauchy.
5.5. - Casos particulares de esfuerzo cortante. Sección rectangular, circular, perfil laminado. tensión media a cortante.
5.6. - Tipologías a flexión en función de la luz. Casuística.
5.7. - Tipologías a cortante.
5.8. - Tipologías a rasante
5.9. - Ejercicios flexión simple y pura.
Tema 6. Flexión compuesta.
6.1. - Definición de flexión compuesta.
6.2. - Casuística de flexión compuesta. Axil excéntrica, carga oblicua, axilas y viento, muros de contención, postensado / pretensado de un elemento de hormigón.
6.3. - Cálculo tensional.
6.3. - Ecuación de la línea neutra.
6.6. - Ejercicios flexión compuesta.
Tema 7. Flexión sesgada.
7.1. - Definición de flexión sesgada.
7.2. - Casuística de flexión sesgada. Carga excéntrica, correas de cubierta, soportes.
7.3. - Cálculo tensionales.
7.4. - Ecuación de la línea neutra.
7.5. - El núcleo central. propiedades. Obtención del núcleo central. Casos genéricos: rectangular, circular, anular, perfil laminado.
7.6. - Cuadro resumen tipo de flexión. Elementos comunes de la edificación.
7.7. - Ejercicios flexión sesgada.
Tema 8. Torsión.
8.1. - Definición esfuerzo torsor.
8.2. - Casuística de esfuerzo torsor.
8.3. - Diagramas de momento torsor.
8.4. - Cálculo tensionales para el caso de secciones circulares.
8.5. - Cálculo deformacional para el caso de secciones circulares. Giro torsional.
8.6. - Torsión uniforme y torsión no uniforme.
8.7. - Secciones Vs torsión. Rigidez torsional de una sección.
8.8. -Diseño de piezas sometidas a torsión.
8.9. - Ejercicios esfuerzo torsor.
El profesor se reserva el derecho de evaluar o no evaluar las prácticas de laboratorio y/o el trabajo final dependiendo de la evolución y adquisición de conocimientos por parte del alumnado durante el curso. En caso de no evaluar las prácticas, las pruebas escritas (control+examen) tendrán un valor del 100% sobre la nota final.
La evaluación será continuada y contemplará las propuestas y mecanismos de recuperación de los conocimientos y competencias. Todo ello dentro del período que comprende la materia.
Para superar la asignatura la nota final debe ser superior a 5 y haber realizado todas las prácticas.
Para proceder a la obtención de la media la nota mínima en el examen escrito (85%) deberá ser de 4 puntos. Una nota inferior a 4 puntos supone el suspenso de la asignatura y la máxima nota final que podrá obtener el alumno será de 4 puntos, independientemente de si la media supera el 5.
La falta de realización de alguna práctica sin causa justificada será causa de suspenso directo de la asignatura.
Sólo se pueden recuperar las pruebas escritas (85%).
Mecánica de Materiales. Gere & Timoshenko. Ediciones Paraninfo
Apuntes de Resistencia de Materiales.
Mecánica de Materiales. Hibbelero. Editorial Pearson.