Información general


Tipo de asignatura: obligatoria

Coordinador: Juan José Pons López

trimestre: Tercer trimestre

Créditos: 4

Profesorado: 

Albert Carrillo Sorolla

Idiomas de impartición


  • Català

Las clases de la asignatura se realizarán en catalán. La bibliografía y el material de soporte también podrán ser en castellano e inglés.

Competencias


Competencias específicas
  • E6. Desarrollar videojuegos en lenguajes de programación de alto nivel en motores gráficos a partir de sus especificaciones.

Competencias generales
  • G1. Demostrar tener y comprender conocimientos avanzados de su área de estudio que abarcan los aspectos teóricos, prácticos y metodológicos, con un nivel de profundidad que llega hasta la vanguardia del conocimiento.

  • G2. Resolver complejos problemas de su ámbito laboral, mediante la aplicación de sus conocimientos, la elaboración de argumentos y procedimientos, y el uso de ideas creativas e innovadoras.

  • G3. Reunir e interpretar datos relevantes (normalmente dentro de su área de estudio) para emitir juicios que incluyan una reflexión sobre temas relevantes de índole social, científica o ética.

  • G5. Desarrollar las habilidades de aprendizaje necesarias para acometer estudios posteriores con un alto grado de autonomía.

Descripción


La asignatura de Fundamentos Matemáticos de los Videojuegos se encuentra dentro del marco de la materia de Desarrollo, incluye en gran medida la simulación de fenómenos físicos reales tales como el movimiento de personajes y objetos, choques, traslaciones, rotaciones, movimientos de cámara, escalados de imagen y otros fenómenos que requieren el uso de herramientas y conceptos matemáticos fundamentales, como la geometría, el álgebra o la trigonometría. La asignatura consta de sesiones teóricas. Para alcanzar los conocimientos de la asignatura se evalúa por un lado ejercicios individuales y por otro ejercicios a realizar en grupo.

Contenidos


Tema 0. Herramientas matemáticas básicas

0.1. Resolución de ecuaciones de primer grado.

0.2. Resolución de ecuaciones de segundo grado.

0.3. Sistemas de ecuaciones.

Tema 1. Álgebra y Geometría al plan I (2D)

1.1. Sistemas de coordenadas.

1.2. Juegos: Sistemas de coordenadas aplicados (mundo, pantalla, cámara, objetos).

1.3. Vectores. Concepto. Coordenadas y módulo. Vectores libres y vectores fijos. Vectores unitarios.

1.4. Operaciones básicas con vectores: sumar, restar, producto por un escalar.

1.5. Juegos: Posiciones, distancias y rutas.

1.6. Producto escalar y producto vectorial. Ángulos y posición relativa entre vectores. Paralelismo y perpendicularidad.  

1.7. Juegos: Propiedades vectoriales de objetos de juego.

1.8. Juegos: Imágenes y sistemas de coordenadas, imágenes vectoriales.

1.9. Vectores en el espacio

Tema 2. Trigonometría

2.1. Medida de ángulos. Unidades.

2.2. Razones trigonométricas.

2.3. Triángulos equivalentes. Simetría. Ángulos complementarios. 

2.4. Vectores y trigonometría: coordenadas cartesianas y coordenadas polares. 

2.5. Vectores unitarios y razones trigonométricas. 

2.6. Juegos: Proyección de sombras, ángulos entre objetos, descomposición de magnitudes vectoriales.

Tema 3. Trayectorias rectilíneas al plano (2D)

3.1. Ecuación de la recta. Pendiente y ordenada en el origen.

3.2. Recorridos rectilíneos.

3.3. Interpolación lineal.

3.4. Posición relativa de dos rectas. Ángulo, intersección, paralelismo, perpendicularidad.

3.5. Reflexión especular.  

3.6. Juegos: trayectorias rectilíneas, simulación de proyectiles, reflexión en superficies.

3.7. Juegos: Intersección de trayectorias, interpolación de movimiento.

Tema 4. Física del movimiento

4.1. Movimiento rectilíneo uniforme.

4.2. Movimiento rectilíneo uniformemente acelerado.

4.3. Movimiento circular.

4.4 Casos particulares: caída libre y tiro parabólico.

4.5. Juegos: creación de gravedad, caída libre, salto parabólico, rozamiento, viento, lanzamiento de proyectiles.

4.6. Choques elásticos y inelásticos. Coeficiente de restitución.

4.7. Física del movimiento en el espacio

Tema 5. Álgebra y Geometría al plan II (2D)

5.1. Matrices. Concepto, representación y operaciones básicas.

5.2. Matriz identidad. Matriz diagonal. Matriz inversa.

5.3. Espacios vectoriales y bases. Representación matricial. 

5.4. Sistema de referencia. Matrices de cambio de base.

5.5. Juegos: cambios de sistemas de referencia. 

5.6. Matrices de transformación: traslación, rotación, escalado, deformación.

5.7. Juegos: traslación de objetos y personajes, rotación, escalado. Movimientos de cámara. 

 

Sistema de evaluación


La nota de cada alumno se calculará siguiendo los siguientes porcentajes:

A1. Ejercicios en casa 10%

A2. Ejercicios en clase: Mathaton 10%

A3. Trabajo individual: Ejercicios y problemas 30%

A4. examen final 50%

Nota final = A1 0,1:2 + A0,1 3:0,3 + A4 0,5:XNUMX + AXNUMX XNUMX:XNUMX

Consideraciones:

  • Hay que obtener una nota superior a 4 en el examen final para aprobar la asignatura.
  • Una actividad no entregada o entregada con retraso y sin justificación (citación judicial o asunto médico) cuenta como un 0.
  • Es responsabilidad del alumno evitar el plagio en todas sus formas. En el caso de detectar un plagio, independientemente de su alcance, en alguna actividad corresponderá a tener una nota de 0. Además, el profesor comunicará a la Jefe de estudios la situación para que se tomen medidas aplicables en materia de régimen sancionador .
  • Los alumnos que hayan suspendido la asignatura podrán realizar un examen de recuperación en las fechas preestablecidas por la misma universidad en el calendario académico oficial. 

recuperación:

  • Hay que obtener una nota superior a 5 en el examen de recuperación para aprobar la asignatura.
  • En caso de superar la recuperación, la nota final máxima de la asignatura será de 5.

Bibliografía


Básico

Lengyel, E. (2012). "Mathematics for 3D Game Programming and Computer Graphics" (Third Edition). Boston, MA (USA): Course Technology PTR (Cengage Learning)

"Discover Math with GeoGebra." GeoGebra - Dynamic Mathematics, www.geogebra.org

DUNN, F .; PARBERRY, I. (2002). "3D Math Primer for Graphics and Game Development". Plano, Texas (USA): Wordware Publishing, Inc.