Información general


Tipo de asignatura: obligatoria

Coordinador: Juan José Pons López

trimestre: Primer trimestre

Créditos: 6

Profesorado: 

Ester Bernadó Mansilla

Idiomas de impartición


  • Inglés

Competencias


Competencias específicas
  • E15. Diseñar y planificar estrategias de aseguramiento de la calidad, test y análisis de datos de videojuegos y productos interactivos.

Competencias generales
  • G1. Demostrar tener y comprender conocimientos avanzados de su área de estudio que abarcan los aspectos teóricos, prácticos y metodológicos, con un nivel de profundidad que llega hasta la vanguardia del conocimiento.

  • G2. Resolver complejos problemas de su ámbito laboral, mediante la aplicación de sus conocimientos, la elaboración de argumentos y procedimientos, y el uso de ideas creativas e innovadoras.

  • G3. Reunir e interpretar datos relevantes (normalmente dentro de su área de estudio) para emitir juicios que incluyan una reflexión sobre temas relevantes de índole social, científica o ética.

  • G4. Comunicar información, ideas, problemas y soluciones a un público especializado como no especializado.

  • G5. Desarrollar las habilidades de aprendizaje necesarias para acometer estudios posteriores con un alto grado de autonomía.

competencias transversales
  • T1. Comunicar en un tercer idioma, que será preferentemente el inglés, con un nivel adecuado de forma oral y por escrito y acorde con las necesidades que tendrán los graduados y graduadas.

Descripción


La asignatura introduce al estudiante en el mundo de la analítica de datos, con aplicación al análisis de datos de videojuegos. El análisis de datos se convierte en un aspecto fundamental del desarrollo del juego, en múltiples aspectos:

  • Ayuda a comprender el comportamiento del usuario y poder adaptarse para mejorar la experiencia del mismo.
  • Se pueden identificar tipos de usuarios, según su comportamiento, según el tipo de estrategias que usan, o según el tipo de monetización que eligen o el dinero que se gastan.
  • Conocer cómo juega el jugador, si hay dificultades importantes en determinados puntos del juego o es demasiado sencillo, el tiempo que emplean en terminar un determinado nivel o el tiempo de juego en cada sesión, etcétera, son datos importantes para poder ajustar el juego en fases de testeo y balanceo.
  • Se pueden probar versiones alternativas de un determinado juego y analizar cuál de ellas tiene "más éxito", según los parámetros que se deseen medir como éxito (número de jugadores, tiempo de juego, ingresos que genera ...)
  • El análisis de datos es también importante para ajustar la monetización de un videojuego.

La asignatura se contextualiza en el área de Producción y Negocio del Grado en Diseño y Producción de Videojuegos. Los contenidos se basan en una revisión de las métricas más habituales en diseño y monetización de videojuegos y realiza una introducción a la estadística inferencial y al análisis de datos con métodos de machine learning. Se usa el lenguaje R a lo largo de toda la asignatura para los ejercicios y ejemplos prácticos. La metodología combina clases magistrales con ejercicios y actividades prácticas. Las actividades de evaluación son ejercicios prácticos y un proyecto de analítica que cuentan un 60% de la nota y el 40% restante corresponde a un examen final. 

La asignatura no tiene prerrequisitos.

Contenidos


El contenido de la asignatura está formado por los apartados que se listan a continuación:

  1. Introducción a la analítica de datos
    1. Importancia del análisis de datos en videojuegos
    2. ¿Qué es el análisis de datos?
    3. ¿Qué es el análisis de datos para videojuegos (game analytics)?
    4. Ejercicios y ejemplos
  2. Métricas de análisis de videojuegos
    1. Tipos de métricas
    2. Métricas específicas según el género de juego
    3. Métricas de población
    4. Métricas de monetización
    5. Métricas de marketing
  3. Introducción a la herramienta R
    1. Entorno de desarrollo I
    2. Gestión de datos en I
    3. pedidos principales
    4. Visualización de información
  4. Introducción a la estadística
    1. Estadística descriptiva
    2. Parámetros descriptivos básicos
    3. Gráficos
    4. Aplicación de la estadística descriptiva al análisis de métricas de videojuegos
  5. Estadística inferencial
    1. Introducción a los test de hipótesis
    2. Tests de hipótesis de una muestra
    3. Tests de hipótesis de dos muestras
    4. Aplicación: test A / B de diseño de un videojuego
  6. Aprendizaje automático (Machine learning & LLM)
    1. ¿Qué es el machine learning?
    2. Fases principales de un proceso de minería de datos basado en machine learning.
    3. Enfoques principales del machine learning: regresión, clasificación, agrupación.
    4. Aplicación a videojuegos
  7. Informes
    1. Cómo presentar la información de analítica de datos
    2. Extracción de conclusiones
  8. Otras herramientas de análisis visual de datos: Tableau, Microsoft PowerBI.

Los contenidos se irán alternando con casos prácticos de aplicación para poder ver la utilidad de los contenidos que se tratan a lo largo de la asignatura. La asignatura integra aspectos de los objetivos de desarrollo sostenible usando ejemplos prácticos y conjuntos de datos que permiten el análisis y la reflexión sobre los mismos.

Sistema de evaluación


La evaluación de la asignatura es:

  1. Ejercicios prácticos en casa o en clase: 30%
  2. Prácticas de laboratorio (proyecto de analítica): 30%
  3. Examen final: 40%

Las actividades de evaluación continua se deben entregar en los plazos especificados a lo largo del curso. Más allá de los plazos especificados, el alumno no podrá entregar las actividades de evaluación continua, corriendo el riesgo de suspender la asignatura por este motivo. En la convocatoria de recuperación no será posible entregar las actividades de evaluación continua.

Hay que considerar atentamente los siguientes aspectos:

  • La asistencia a clase es obligatoria, con un mínimo necesario del 70% de asistencia.
  • La nota mínima del examen final es 4. Si el alumno saca una nota inferior, no hará promedio con las actividades y deberá ir a un examen de recuperación. En caso de ir a recuperación, la media se calculará de la misma manera, sustituyendo la nota del examen por la nota del examen de recuperación.
  • Los ejercicios prácticos se entregarán en el plazo establecido. En otro caso, contarán un 0 en la nota.
  • En las prácticas de analítica (proyecto de analítica) habrá dos fechas de entrega: la convocatoria ordinaria y la convocatoria extraordinaria (por casos excepcionales). Las prácticas de analítica entregadas en convocatoria extraordinaria contarán un 5 como máximo. Se especificará una fecha máxima de entrega para la convocatoria extraordinaria más allá de la cual no será posible entregar las prácticas y por tanto, contarán como un 0. Se recomienda que el alumno no planifique entregar en la convocatoria extraordinaria para que comporta una disminución en la nota.

Bibliografía


Básico

García-Ruiz, MA (2016). Games User Research. En Case Study Approach. CRC Press.

Wallner, G. (2019). Data Analytics Applications in Gaming and Entertainment. CRC Press.

Ugarte, MD, Militino, Ana F., & Arnholt, AT (2020). Probability and Statistics with R (2nd edition). CRC Press.

de Vries, A., & MEYSS, J. (2015). R for Dummies. John Wiley & Sons.

Brett Lanz (2013). Machine Learning with R. Learn how to use R to apply powerful machine learning methods and gain an insight into real-world applications. Packt Publishing.

Magyar Seif El Nasr & Anders Drachen (2013). Game Analytics: Maximizing the Value of Player Fecha. Springer.

 

Complementario

Witten, EH, Frank, E., & Hall, MA (2011). Data Mining. Practical Machine Learning Tools and Techniques. Third Edition. Morgan Kaufmann.

Bari, A., Chaouchi, M. & Jung, T. (2014). Predictive Analytics for Dummies. John Wiley and Sons.

Zumel, N. & Mount, J. (2014). Practical Data Science with R. Shelter Island: Manning.

Arun Sukumar, Lucian Tipi & Jayne Revilla (2016). Applied Business Analysis. Disponible en: bookboon.com.

Brink, David (2010). Essentials of Statistics: Exercises. Disponible en: bookboon.com.