Información general


Tipo de asignatura: básica

Coordinador: Alfonso Palacios González

trimestre:2

Créditos: 6

Profesorado: Moisés Burset Albareda

Descripción


La comprensión y la habilidad para analizar fenómenos aleatorios puede ser de gran relevancia en algunas ramas de la ingeniería informática, como en el procesado y análisis de información biológica (bioinformática). Hay procesos que, por su propia naturaleza, son aleatorios (como el estudio del tiempo que puede pasar hasta que una máquina se estropee, o qué tamaño tendrá un animal, ...) lo que, paradójicamente, no implica que no sean fenómenos tratables y / o modelizables.

Esta asignatura dispone de recursos metodológicos y digitales para hacer posible su continuidad en modalidad no presencial en el caso de ser necesario por motivos relacionados con la Covidien-19. De esta forma se asegurará la consecución de los mismos conocimientos y competencias que se especifican en este plan docente.

Resultados de aprendizaje


1.- Describir la estructura general de un estudio estadístico. Definir los objetivos, la adquisición de datos junto con una primera exploración de las mismas, analizarlas, extraer conclusiones y presentar los resultados (utilizando algún tipo de software de análisis de datos)
2.- Sintetizar la información (de forma gráfica y numérica) mediante estadística descriptiva
3.- Conocer cómo aplicar los principios básicos de la combinatoria, utilizando las propiedades principales de la teoría de las probabilidades, así como solucionar problemas concretos
4.- Identificar la distribución de referencia en un fenómeno aleatorio concreto
5.- Identificar las típicas situaciones de la distribución normal
6.- Resolver problemas de inferencia estadística, ya sea utilizando intervalos de confianza o test de hipótesis.
 

Metodología de trabajo


Todos los conceptos teóricos de la materia se expondrán en las clases de teoría (grupos grandes), aunque constantemente estaremos mezclando la teoría con ejemplos y ejercicios, por lo que muy probablemente sería más adecuado hablar de sesiones teórico-prácticas.

Algunos de los ejercicios se resolverán en clase y otros quedarán como trabajo individual de aprendizaje y consolidación de conceptos. Se podrán aprovechar las sesiones prácticas, o de laboratorio (grupos pequeños), para resolver algunos de los ejercicios o para plantear nuevos, basados ​​en los que ya se habrán trabajado en las sesiones teórico-prácticas. Estas actividades, por su naturaleza breve y en ocasiones optativa, servirán al estudiante como instrumento de autoevaluación de su consecución de los contenidos de la materia.

 

contenidos


1.-Estadística descriptiva
2.-Combinatoria y probabilidades
3.-Distribuciones
4.-Inferencia
5.-Regresiones

 

Actividades de aprendizaje


Los estudiantes recibirán un conjunto de actividades (ejercicios cortos, problemas,...) que serán la base para su aprendizaje. En ocasiones, estas actividades serán resueltas en las sesiones de teoría, otras veces se resolverán en las sesiones prácticas y en otras ocasiones se convertirán en trabajos individuales para resolver después de clase.

Con el objetivo de recoger evidencias del logro de los resultados de aprendizaje esperados se realizan las siguientes actividades de carácter evaluativo:

Exámenes: habrá debido pruebas escritas individuales. Un examen parcial (P) y un final (F), en el que entrará todo el temario de la asignatura. La puntuación se calculará como: maxim((P+F)/2,F). En resumen, el parcial sólo puede subir la nota, nunca descenderla. Esta parte tendrá la posibilidad de ser recuperada, si se ha suspendido.

Trabajo en grupo: hacia el final de la asignatura, dentro de las sesiones prácticas, será necesario escribir y presentar un informe ante la clase donde se expondrán los resultados de un estudio estadístico aplicado a unos datos concretos, obtenidos de alguna base de datos pública ( como el INE).

Cualquier actividad no entregada se considerará puntuada con cero puntos

 

Sistema de evaluación


La calificación final será la suma ponderada de las calificaciones de las actividades de aprendizaje, es decir:

Calificación_final = 0.70 nota_exámenes + 0.30 trabajo_grupo

Bibliografía


básico

Hossein Pishro-Nik, Introduction to Probability, Statistics, and Random Processes. Kappa Research, LLC 2014

MICHAEL BARON. Probability and Statistics for Computer Scientists. 2nd Ed. CRC Press 2014

Joseph K. Blitzstein, Jessica Hwang, Introduction to Probability, Chapman & Hall / CRC Texts in Statistical Science Har / Psc Edition 2014

Complementario

Pierre Lafaye de Micheaux, Rémy Drouilhet, Benoit liquet; The R Software: Fundamentals of Programming and Statistical Analysis (Statistics and Computing), springer 2013th Edition